2,293 research outputs found

    Nilsson-SU3 selfconsistency in heavy N=Z nuclei

    Get PDF
    It is argued that there exist natural shell model spaces optimally adapted to the operation of two variants of Elliott' SU3 symmetry that provide accurate predictions of quadrupole moments of deformed states. A selfconsistent Nilsson-like calculation describes the competition between the realistic quadrupole force and the central field, indicating a {\em remarkable stability of the quadruplole moments}---which remain close to their quasi and pseudo SU3 values---as the single particle splittings increase. A detailed study of the N=ZN=Z even nuclei from 56^{56}Ni to 96^{96}Cd reveals that the region of prolate deformation is bounded by a pair of transitional nuclei 72^{72}Kr and 84^{84}Mo in which prolate ground state bands are predicted to dominate, though coexisting with oblate ones,Comment: Replacement I) Title simplified. II) Major revision: structure of paper kept but two thirds totally rewritten (same number of pages); 20 references adde

    Size, shape, and flexibility of RNA structures

    Full text link
    Determination of sizes and flexibilities of RNA molecules is important in understanding the nature of packing in folded structures and in elucidating interactions between RNA and DNA or proteins. Using the coordinates of the structures of RNA in the Protein Data Bank we find that the size of the folded RNA structures, measured using the radius of gyration, RGR_G, follows the Flory scaling law, namely, RG=5.5N1/3R_G =5.5 N^{1/3} \AA where N is the number of nucleotides. The shape of RNA molecules is characterized by the asphericity Δ\Delta and the shape SS parameters that are computed using the eigenvalues of the moment of inertia tensor. From the distribution of Δ\Delta, we find that a large fraction of folded RNA structures are aspherical and the distribution of SS values shows that RNA molecules are prolate (S>0S>0). The flexibility of folded structures is characterized by the persistence length lpl_p. By fitting the distance distribution function P(r)P(r) to the worm-like chain model we extracted the persistence length lpl_p. We find that lp1.5N0.33l_p\approx 1.5 N^{0.33} \AA. The dependence of lpl_p on NN implies the average length of helices should increases as the size of RNA grows. We also analyze packing in the structures of ribosomes (30S, 50S, and 70S) in terms of RGR_G, Δ\Delta, SS, and lpl_p. The 70S and the 50S subunits are more spherical compared to most RNA molecules. The globularity in 50S is due to the presence of an unusually large number (compared to 30S subunit) of small helices that are stitched together by bulges and loops. Comparison of the shapes of the intact 70S ribosome and the constituent particles suggests that folding of the individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres

    What can be learned from binding energy differences about nuclear structure: the example of delta V_{pn}

    Full text link
    We perform an analysis of a binding energy difference called delta V_{pn}(N,Z) =- 1/4(E(Z,N)-E(Z,N-2)-E(Z-2,N)+ E(Z-2,N-2) in the framework of a realistic nuclear model. Using the angular-momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4, we analyze the contribution brought to delta V_{pn} by static deformation and dynamic fluctuations around the mean-field ground state. Our method gives a good overall description of delta V_{pn} throughout the chart of nuclei with the exception of the anomaly related to the Wigner energy along the N=Z line. The main conclusions of our analysis are that (i) the structures seen in the systematics of delta V_{pn} throughout the chart of nuclei can be easily explained combining a smooth background related to the symmetry energy and correlation energies due to deformation and collective fluctuations; (ii) the characteristic pattern of delta V_{pn} around a doubly-magic nucleus is a trivial consequence of the asymmetric definition of delta V_{pn}, and not due to a the different structure of these nuclei; (iii) delta V_{pn} does not provide a very reliable indicator for structural changes; (iv) \delta V_{pn} does not provide a reliable measure of the proton-neutron interaction in the nuclear EDF, neither of that between the last filled orbits, nor of the one summed over all orbits; (v) delta V_{pn} does not provide a conclusive benchmark for nuclear EDF methods that is superior or complementary to other mass filters such as two-nucleon separation energies or Q values.Comment: 19 pages and 12 figure

    Nature of the glassy phase of RNA secondary structure

    Full text link
    We characterize the low temperature phase of a simple model for RNA secondary structures by determining the typical energy scale E(l) of excitations involving l bases. At zero temperature, we find a scaling law E(l) \sim l^\theta with \theta \approx 0.23, and this same scaling holds at low enough temperatures. Above a critical temperature, there is a different phase characterized by a relatively flat free energy landscape resembling that of a homopolymer with a scaling exponent \theta=1. These results strengthen the evidence in favour of the existence of a glass phase at low temperatures.Comment: 7 pages, 1 figur

    Mirror displacement energies and neutron skins

    Get PDF
    A gross estimate of the neutron skin [0.80(5)(NZ)/A(N-Z)/A fm] is extracted from experimental proton radii, represented by a four parameter fit, and observed mirror displacement energies (CDE). The calculation of the latter relies on an accurately derived Coulomb energy and smooth averages of the charge symmetry breaking potentials constrained to state of the art values. The only free parameter is the neutron skin itself. The Nolen Schiffer anomaly is reduced to small deviations (rms=127 keV) that exhibit a secular trend. It is argued that with state of the art shell model calculations the anomaly should disappear. Highly accurate fits to proton radii emerge as a fringe benefit.Comment: 4 pages 3 figures, superseeds first part of nucl-th/0104048 Present is new extended version: 5 pages 4 figures. Explains more clearly the achievements of the previous on

    Analytical description of finite size effects for RNA secondary structures

    Full text link
    The ensemble of RNA secondary structures of uniform sequences is studied analytically. We calculate the partition function for very long sequences and discuss how the cross-over length, beyond which asymptotic scaling laws apply, depends on thermodynamic parameters. For realistic choices of parameters this length can be much longer than natural RNA molecules. This has to be taken into account when applying asymptotic theory to interpret experiments or numerical results.Comment: 10 pages, 13 figures, published in Phys. Rev.

    Quantification of the differences between quenched and annealed averaging for RNA secondary structures

    Get PDF
    The analytical study of disordered system is usually difficult due to the necessity to perform a quenched average over the disorder. Thus, one may resort to the easier annealed ensemble as an approximation to the quenched system. In the study of RNA secondary structures, we explicitly quantify the deviation of this approximation from the quenched ensemble by looking at the correlations between neighboring bases. This quantified deviation then allows us to propose a constrained annealed ensemble which predicts physical quantities much closer to the results of the quenched ensemble without becoming technically intractable.Comment: 9 pages, 14 figures, submitted to Phys. Rev.

    Backbending in 50Cr

    Get PDF
    The collective yrast band and the high spin states of the nucleus 50Cr are studied using the spherical shell model and the HFB method. The two descriptions lead to nearly the same values for the relevant observables. A first backbending is predicted at I=10\hbar corresponding to a collective to non-collective transition. At I=16\hbar a second backbending occurs, associated to a configuration change that can also be interpreted as an spherical to triaxial transition.Comment: ReVTeX v 3.0 epsf.sty, 5 pages, 5 figures included. Full Postscript version available at http://www.ft.uam.es/~gabriel/Cr50art.ps.g

    Binomial level densities

    Full text link
    It is shown that nuclear level densities in a finite space are described by a continuous binomial function, determined by the first three moments of the Hamiltonian, and the dimensionality of the underlying vector space. Experimental values for 55^{55}Mn, 56^{56}Fe, and 60^{60}Ni are very well reproduced by the binomial form, which turns out to be almost perfectly approximated by Bethe's formula with backshift. A proof is given that binomial densities reproduce the low moments of Hamiltonians of any rank: A strong form of the famous central limit result of Mon and French. Conditions under which the proof may be extended to the full spectrum are examined.Comment: 4 pages 2 figures Second version (previous not totally superseeded
    corecore